viernes, 22 de mayo de 2015

Diferenciabilidad y continuidad.


 v    Así como existen límites unilaterales también podemos hablar de derivadas unilaterales. A continuación se dan las definiciones de derivadas por la derecha y por la izquierda de una función en un punto determinado.

v    La continuidad de una función en un número no implica que la función sea derivable en dicho número; por ejemplo, la función valor absoluto es continua en 0 pero no es diferenciable en cero. Veamos:


Derivada; Diferenciabilidad
La derivada de una función f en el punto a en su dominio se define por
    f'(a)=lim
    h0
    f(a+h) - f(a)

    h
Decimos que la función f es diferenciable en el punto a en su dominio si f'(a) existe.
Diferenciable en un subconjunto del dominio
La función f es diferenciable en el subconjunto S de su dominio si es diferenciable en cada punto de S.

No hay comentarios:

Publicar un comentario