Para funciones de variables reales es posible definir el diferencial rigurosamente interpretándolo como una 1-forma. Así el diferencial está definido en los tratamientos modernos del cálculo diferencial de la siguiente manera.1 El diferencial de una función ƒ(x) de variable real es la función df:
donde dx y df son covectores del espacio cotangente que es isomorfo al propio . Uno, o los dos, argumentos pueden ser suprimidos: ej., se puede ver df(x) o simplemente df. Si y = ƒ(x), el diferencial también puede ser escrito dy. Dado que dx(x, Δx) = Δx es convencional escribir dx = Δx, de manera que la igualdad
No hay comentarios:
Publicar un comentario